进阶算法—图论篇
图相关的算法
BFS模板
1 |
|
从一个单词变成另一个单词类型的题直接套用BFS模板
对单词的每一位进行变化并用哈希记录每一步变化
433. 最小基因变化
思路
127. 单词接龙
思路
DFS模板
1 |
|
DFS 与 BFS 区别
深度优先搜索(dfs),和广度优先有什么区别(bfs)
- dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,在换方向(换方向的过程就涉及到了回溯)。
- bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。
dfs 搜索过程
上面说道dfs是可一个方向搜,不到黄河不回头。那么我们来举一个例子。
如图一,是一个无向图,我们要搜索从节点1到节点6的所有路径。
图一
那么dfs搜索的第一条路径是这样的:(假设第一次延默认方向,就找到了节点6),图二
图二
此时我们找到了节点6,(遇到黄河了,是不是应该回头了),那么应该再去搜索其他方向了。如图三:
图三
路径2撤销了,改变了方向,走路径3(红色线), 接着也找到终点6。那么撤销路径2,改为路径3,在dfs中其实就是回溯的过程(这一点很重要,很多录友不理解dfs代码中回溯是用来干什么的)
又找到了一条从节点1到节点6的路径,又到黄河了,此时再回头,下图图四中,路径4撤销(回溯的过程),改为路径5。
又找到了一条从节点1到节点6的路径,又到黄河了,此时再回头,下图图五,路径6撤销(回溯的过程),改为路径7,路径8 和 路径7,路径9, 结果发现死路一条,都走到了自己走过的节点。
图五
那么节点2所连接路径和节点3所链接的路径 都走过了,撤销路径只能向上回退,去选择撤销当初节点4的选择,也就是撤销路径5,改为路径10 。如图图六:
图六
上图演示中,其实我并没有把 所有的 从节点1 到节点6的dfs(深度优先搜索)的过程都画出来,那样太冗余了,但 已经把dfs 关键的地方都涉及到了,关键就两点:
- 搜索方向,是认准一个方向搜,直到碰壁之后在换方向
- 换方向是撤销原路径,改为节点链接的下一个路径,回溯的过程。
相关题目
797. 所有可能的路径
841. 钥匙和房间
岛屿问题
我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题,是在一种「网格」结构中进行的。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。
网格问题的基本概念
我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。
网格问题是由m×n 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。
岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。
在这样一个设定下,就出现了各种岛屿问题的变种,包括岛屿的数量、面积、周长等。不过这些问题,基本都可以用 DFS 遍历来解决。
DFS 的基本结构
网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的图结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:
1 |
|
可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。
第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。
第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.left 和 root.right 操作不会出现空指针异常。
对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:
首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的
其次,网格 DFS 中的 base case 是什么?从二叉树的 base case 对应过来,应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子。
这一点稍微有些反直觉,坐标竟然可以临时超出网格的范围?这种方法我称为「先污染后治理」—— 甭管当前是在哪个格子,先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回。这跟二叉树的遍历方法是一样的,先递归调用,发现 root == null 再返回。
这样,我们得到了网格 DFS 遍历的框架代码:
1 |
|
如何避免重复遍历
网格结构的 DFS 与二叉树的 DFS 最大的不同之处在于,遍历中可能遇到遍历过的结点。这是因为,网格结构本质上是一个「图」,我们可以把每个格子看成图中的结点,每个结点有向上下左右的四条边。在图中遍历时,自然可能遇到重复遍历结点。
这时候,DFS 可能会不停地「兜圈子」,永远停不下来
如何避免这样的重复遍历呢?答案是标记已经遍历过的格子。以岛屿问题为例,我们需要在所有值为 1 的陆地格子上做 DFS 遍历。每走过一个陆地格子,就把格子的值改为 2,这样当我们遇到 2 的时候,就知道这是遍历过的格子了。也就是说,每个格子可能取三个值:
0 —— 海洋格子
1 —— 陆地格子(未遍历过)
2 —— 陆地格子(已遍历过)
我们在框架代码中加入避免重复遍历的语句:
1 |
|
695. 岛屿的最大面积
463. 岛屿的周长
200. 岛屿数量
搜索相关的题目
733. 图像渲染
1034. 边框着色
785. 判断二分图
886. 可能的二分法
529. 扫雷游戏
827. 最大人工岛
1254. 统计封闭岛屿的数目
289. 生命游戏
1020. 飞地的数量
1905. 统计子岛屿
417. 太平洋大西洋水流问题
2059. 转化数字的最小运算数
403. 青蛙过河
675. 为高尔夫比赛砍树
847. 访问所有节点的最短路径
1345. 跳跃游戏 IV
拓扑排序
根据一张有向无环图,把所有要做的事整理出一个顺序
首先以一个入度为0的点作为起点进行搜索,用完之后删除该点和与之相关的边再以下一个入度为0的点进行搜索。
1 |
|